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Computational and experimental studies of the fluid motion and heat transfer 
characteristics of an incompressible fluid contained in a non-rectangular inclined 
enclosure are described in this paper. The enclosure has two 45 ° inclined side walls 
one of which was heated and the other cooled. The remaining two sides of the 
enclosure are parallel and insulated. The enclosure was rotated about the long axis 
in steps of 30 ° through 360 ° . Experiments were performed to study the effects of 
Rayleigh number, aspect ratios and orientation of the enclosure. The computational 
method uses a mesh transformation technique coupled with the introduction of 
"false transient' parameters for the steady state solution of the problem. The experi- 
mental method uses smoke for flow visualization studies. With aspect ratios of 3 
and 6, the results indicate that the heat transfer and fluid motion within the enclosure 
is a strong function of both the Rayleigh number and the cavity orientation angle. 
A minimum and a maximum mean Nusselt number occurred as the angle of 
inclination was increased from 0 to 360 °. A transition in the mode of circulation 
occurred at the angle corresponding to the minimum or maximum rate of heat 
transfer. Stream lines and isotherms are presented for the most representative cases 
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Steady two-dimensional buoyancy driven recirculat- 
ing flows, particularly those in rectangular enclosures 
with isothermal but differentially heated vertical end 
walls and insulated horizontal walls, have been 
studied extensively during the past two decades. Cat- 
ton I has reviewed the large body of work in this area 
prior to 1978. More recently, attention has been given 
to tilted rectangular enclosures ~-ll. Analytical studies 
for the stability of flow in inclined cavities have been 

12 performed by Hart wh]le experimental results are 
best represented by the work of Ozoe et al la-15, Hol- 
lands and Koniceck l~, Wirtz, Righi and Zirilli l° and 
Arnold, Catton and Edwards xT. Catton, Ayyaswamy 
and Clever is presented some numerical calculations 
for A = 2  and 5 and Wirtz and Tseng xl presented 
two-dimensional finite difference solutions for A = 2 
and 5 for tilt angles ranging from 4 )=-90  ° (heating 
from above) to 4)= +90 ° (heating from below). A 
three-dimensional numerical study of convection pat- 
terns in an inclined differentially heated box was 
carried out by Graham and Mallinson 19. 

Numerical methods and flow visualization 
studies have been widely used for inclined rec- 
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tangular enclosures. Little appears in the literature 
for the case of inclined non-rectangular cavities, the 
only obvious relevant work being that of Chung and 
Trefethen 4. The purpose of this work was to study 
the flow behaviour and its effects on the heat transfer 
and temperature distribution within a non- 
rectangular enclosure. The non-rectangular enclosure 
chosen is of trapezoidal cross-section with two 45 ° 
inclined side walls one of which was heated and the 
other cooled. The remaining two sides of the 
enclosure are parallel and insulated (Fig 1). The para- 
meters studied are for aspect ratios of 3 and 6 and 
Prandtl number of 0.7; Rayleigh number of the fluid 
is allowed to vary from 102 to 105 and the angle of 
tilt varied from 0 ° to 360 ° in steps of 30 ° . In the 
analysis, it is assumed that the fluid motion is two- 
dimensional and confined to the x - g plane of Fig 1. 
The viscous effects due to the presence of end walls 
are neglected since Ozoe et a114 have shown that if 
the width/length ratio is greater than 1, this effect is 
absent. Ozoe et al also showed that for high Rayleigh 
number there is a possibility of three-dimensional 
flow patterns when the enclosure is tilted above a 
critical angle. Above this critical angle, a stable roll 
mode of convection with its axis parallel to the z-axis 
might be expected. Therefore we expected that our 
two-dimensional numerical results would deviate 
from the experimental observation as the tilted angle 
approaches this critical angle. Outside this range, the 
convection should be two-dimensional and confined 
to the x - y plane of Fig 1. 

Int. J. Heat & Fluid Flow 0142-727X/84/010029-08503.00 (~ 1984 Butterworth & Co (Publishers) Ltd 29 



T. S. Lee 

~ / _ ~ y z ' / / e ' / / / / / / / / / / / / / /  

x ,~'-- d 

a 

. "1, 

C 

Fig 1 The model, its coordinates and mesh systems 
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Governing equations 
If we restrict our attention to two-dimensional, steady 
laminar flow with constant properties, then the 
governing equations which'describe the motion of 
the incompressible fluid in the inclined trapezoidal 
enclosure, subjected to Bousinesq approximation are: 
Momentum equations: 

D~ Vp 
f l ( T -  Tn)$+ uV2a (1) 

Dt Pn 

continuity equation: 

v .  a = o (2) 

Energy transport equation: 

D T  
= aVZT (3) 

Dt 

Using the vector identity: 

(V x f i)x ~= a. V a - V u 2 / 2  

taking curl of Eq (1), and invoking Eq (2), the result- 
ing equation is: 

o ~ r - v x ( a x ~ ) =  - [ 3 V x ( r - r n ) a ~ + u V 2 ~  (4) 
Ot 

With the vorticity vector given by: 

~= v x a (5 )  

Introducing the dimensionless variables 

x * = x / d  

u*=  u/(ot/L) 

~* = ~ / ( a / L  2) 

O = ( T -  Tc) / (Th-  Tc) 

y*= y/1; 

v*= v / (a /L) ;  

6 "  = ~/a;  

t = t/(LZ/a); 

where x*, y*, u*, v*, if*, q,*, 0 and t* represent the 
dimensionless coordinates, velocities, vorticity, 
stream function, temperature and time respectively. 
The characteristic length L is defined as (d × l) 1/2. 

Notation 

A 
d 
g 
1 
L 
M,N 
Nu 
Nu 
Pr 
P 
Ra 
A t  

T 
Th, Te 

Aspect ratio ( l /d )  
Depth of cavity 
Gravitational constant 
Length of cavity 
Characteristic length, (lxd) lie 
mesh sizes 
Local Nusselt number 
Mean Nusselt number 
Prandtl number, u/a 
Pressure 
Rayleigh number, ~gL3VT/ua  
Time increment 
Temperature 
Temperature of hot and cold walls 

t t  

t) 

X, y ,  Z 
V 2 
OL 

E 

0 

01, 02 
1' 

Po 
4~ 
4, 

Velocity in the x-direction 
Velocity in the y-direction 
Rectangular coordinates 
Laplace Operator 
Thermal diffusivity 
Thermal coefficient of volumetric expansion 
Dimensionless transformed x-coordinate 
Vorticity 
Dimensionless transformed y-coordinate 
Dimensionless temperature 
Angles of slope of side walls 
Kinematic viscosity 
Reference density 
Orientation angle of cavity 
Stream function 
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With the above dimensionless variables, Eqs (3) and 
(4) become: 

a0 
- - + 5 "  • V2O=V2O (6) 
at 

a(*_ V x (5" x (*) = - BaPr(V x Og)+ er(V2(*) (7) 
at 

where all variables are now in dimensionless form. 
With the vorticity vector defined by Eq (5), the stream 
function 47, is defined, such that a ~b-isoline is a stream- 
line, ie: 

t~* = V x 47* (8) 

Substituting Eq (8) into Eq (5) gives 

~* = V x (V x 47*) (9) 

and, since ¢ requires to be solenoidal, hence: 

V- 47*=0 (10) 

It can be shown that Eq (9) can be written as a vector 
Poisson equation: 

~* = -V2~ * (11) 

Steady state solution of Eqs (6), (7) and (11) may be 
solved by some iterative procedure, such as the Jacobi 
iteration, or by some relaxation methods ~6. If this 
approach is used, then for each overall iteration loop 
of the set of steady state equations (O/at=O), there 
will be as many inner iteration loops as there are 
equations. Each of these inner iteration loops has to 
converge before the next overall iteration loop can be 
performed. For the set of steady state Eqs (6), (7) and 
(1 1), this procedure can become very time consuming. 
An improved method is to approach the steady state 
solution through the corresponding unsteady 
equations: 

a0 
- - + 5 * .  VO=V20 (12) 
at* 

a(*_ V x (5" x (*) = - BaPr(V x 0g)+ Pr(V2(*) (13) 
at* 

where t* is the dimensionless time. 
This time-dependent transient approach to the 

steady state solution is attractive. If there is more than 
one equation of the vorticity-transport type, then most 
of the inner iteration loops are eliminated. Unfortu- 
nately, Eq (11) remains elliptic in form. Its numerical 
solution requires an iterative technique at each time 
step to determine the stream function at that time. 
The overall solution process is then multi-iterative. 

For problems considered here, we are only 
interested in the steady state solutions. The inner 
iteration loop of stream function-vorticity equation 

= -Vz47 * seems an unnecessary burden in terms of 
computing effort. If the steady state solution is unique, 
and is independent of the transient approach to it, 
then the steady state solution of Eqs (8)-(11) can be 
reached by introducing a transient term into the 
stream function-vorticity equation and treating the 
stream function as a transport quantity: 

a47" = V247" + ¢* (14) 
at* 

Convection in inclined non-rectangular enclosures 

Numerical experimentation shows that the stability 
characteristics of Eqs (12), (13) and (14) varied accord- 
ing to the relative magnitudes of the source term in 
the respective equations, and that convective stability 
of the flow does not affect Eq (14). In terms of numeri- 
cal stability with a fixed time increment At and fixed 
mesh sizes, Eq (14) was found to be the most stable, 
and the vorticity transport equation Eq (13) is numeri- 
cally most unstable. Hence, some 'false transient' 
terms are introduced into Eq (14) to 'speed up' the 
solution and into Eq (13) to stabilize the solution for 
a fixed time increment. The steady state solution is 
finally obtained through a set of 'fast and stable' 
transient equations: 

1 a47" V247,+(, (15) 
at* Ot 0 

a0 
- - + 5 "  • V 0 = V 2 0  (16)  
at* 

1 a(*_ V x (5* x ~*) = - Baer(V x O~) + Pr(V2~ *) 
a~ at* 

(17) 
The values of a 0, lies between 1.0 and 10, and the 
values of a~ lies between 0 and 1.0. The time-steps 
used in the numerical solution follow the Courant- 
Ferderic-Lewis conditions. For two dimensional 
problems in rectangular coordinates, Eqs (15)-(17) 
may be written as: 

1 a~*+ Gu* Tx,+ C~v* 
a~ at* ay* 

_ l ~ # ; *  a2{*~ aT* aT* 
= l)rtC'3~x~~- 64 a!]* / -~- C5 ax ----~'~- c6 a!] -'----~ 

(18) 

OT* OT* OT___**_ # T *  OZT * 
Ot---7-+ Clu* Ox---7 + C2v* Oy* - Ca Ox,-----~ + (24 Oy*----~ 

(19) 

1 0~,* - °~'* °~¢--~* ~* (20) 
% at* = U3 Ox,-----~+ 64 Oy,2 + 

where C I = L / d ,  C z = L / I ,  C3=C~, C 4 = C  2, C5  = 
-BaPrC1 sin a, C6 = BaPrC~ cos a and L = (dxl) 1/2. 
Velocities, given by a stream function ~, in dimension- 
less form are: 

U* = C 2 0~/8 f.), = _ C1 0~/* (21) 
ay* ax* 

For the rest of this paper the * for dimensionless 
quantities has been dropped for simplicity. 

Governing equations in transformed space 
Fig l(a) shows the coordinate system of the inclined 
trapezoidal enclosure with side-slope #l and 02. The 
inclination of the enclosure is defined by the tilted 
angle ¢. The original space (Fig l(b)) is transformed 
into the rectangular domain as shown in Fig l(c) by 
introducing new coordinates: 

e = a x  for 0<~x~<l 

L,-'-T"T.[y--EI(X)] for 0 ~ y < ~ l  (22) blF2(x)- F,(x)] 
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where a, b are scaling factors, chosen such that 0 <~ e ~< 
1 for0~<x<~l a n d 0 < ~ < l f o r 0 < ~ y ~ < l .  Functions 
F~(x) and Fa(x) described the left- and right-hand 
boundary of the enclosure (these may be any analyti- 
cal function or even tabular values). The transforma- 
tion given above is satisfactory provided [ F z ( x ) -  
Fl (x ) l>0 .  

By replacing all the partial derivatives in Eqs 
(18)-(21) with partial derivatives with respect to the 
transformed variable, the equations become: 

1 ~__~+D,u#(,+(Dau+D3v+D4)~.__~_~ 

_ ~ _ Oa¢; _ 0~(, _ O T  _ O T  
= U s  0e-"-~+ D6 ~ - ~ +  D7 ~-~-~+ D8 ~-~+ Do 0--~ 

OT E , u _ ~ T _ + ( E a u + E 3 v + E , ) ~  - - +  
Ot oe 

(23) 

oaT oaT +ETOaT0r/~ (24) 

1 0~q~ O~0 0aq,. 
a---q~+ B] 0q~ = B, ~-:e~ + Ba +B4 ~" (25) 

and the corresponding velocities are: 

u = A l  oTq v = - As  oe + A3 (26) 

where A's, B's, D's and E's are constants resulting 
from the transformation and non-dimensionalization. 

Boundary conditions 

~b at the boundaries are constant as there is no flow 
across the boundaries, ie ~b = 0  on the boundaries. 
Assuming no slip at the solid boundaries, thus u = v = 
0. 0 at the boundaries is given by: 

0--0  along the cold wall (~7 =0) 

0 = 1 along the hot wall (7/= 1) (27) 

00 
- - =  0 along the adiabatic wall (e = 0 and 1) 
0x 

Along the solid walls, the vorticity is evaluated from 

(28) 

Numerical methods 

The solution region in Fig l(b) is stretched into a 
rectangular domain as shown in Fig l(c). This rec- 
tangular domain is then overlayed with a regular finite 
difference mesh. At the node points, the finite differ- 
ence solutions to Eqs (18)-(21), with their boundary 
conditions, are obtained. The numerical procedure 
used involves an ADI method originally proposed by 
Peaceman and Rachford ~° and modified by Samarkii 
and Andreev 2x. For the vorticity transport equation, 

the advancement over one time step is accomplished 
through: 

[ I  - o" ~ t a ,  ] (~*)  = [ a e  + A . ] ( ~ ) "  + ( S o ) "  

[ I -  ~ atA.](~)** = (~)* (29) 

(~)"+~ = (~)" + at(~)** 

where (~)* and (~)** are dummy variables; A~ and A n 
are matrix operators formed through finite differenc- 
ing of the governing equations in the e and ~ direc- 
tions respectively; (So)" is the source term evaluated 
at the most recent solution field; cr is a weighted 
time-step factor; I is an identity matrix. This scheme 
is equivalent to: 

(~).+1_(~).  
= (A, + a . ) ( l  - cr)(~)" 

z%t 

+ (Ae + an)cr(~) "+l 

- cr2At(A,An)((~) "+1 - (~)") 

+(so)" (30) 

For o, = ~, the above scheme corresponds to the Crank- 
Nieholson equation. 

The same method is adopted in solving the 
temperature and stream function-vortieity equations. 
All spatial derivatives are approximated by second- 
order-accurate centre differences. The convective 
terms in Eqs (18) and (19) are approximated by using 
a second order up-wind differencing method. The 
mixed spatial derivatives resulting from the mesh 
transformation are handled by the method proposed 
by McKee and Mitchell ~~. The resulting linear set of 
finite difference equations is then solved by an 
algorithm due to Thomas ~3. Three-point backward 
and forward difference formula are used for deriva- 
tives at the boundaries. The boundary vorticity values 
are obtained by considering the Taylor series 
expansion of qJ into the solution region and taking 
into consideration the ~ and the velocity at the boun- 
dary, ie along the parallel wall: 

3 c .  

and along the inclined wall: 

3C"  
~w = (an)a (~w+,- ¢~)-~+, 

where C., Cr. are spatial constants result ing from 
transformation. Subscripts w and w +  1 refer to the 
wall and the adjacent internal mesh point value 
respectively. Similar expressions were proposed by 
Wood as. 

Heat transfer at the inclined surfaces is defined 
by the local Nusselt number: 

a0 
Nit = - -  

an 

where n is normal to the surface. Finer N u  was 
obtained with the non-uniform mesh generator as 
shown in Fig l(d) where f = 2 / ~ s i n - :  (nl/~). The 
mean Nusselt number is then determined from: 

N u  = N u  de  
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The  mean Nusselt number  is also used as the quant i ty  
to indicate steady state convergence.  The  mean 
Nusselt number  is compu ted  at every twent ie th  iter- 
ation. The  steady state criteria is said to have satisfied 
when  a difference of less than 0.1% of a reference 
Nusselt numbe r  (Nuref = 1.0) is detected. The  compu-  
tation of the Nusselt numbe r  requires the differenti- 
ation of the tempera ture  funct ion,  and should there- 
fore converge  at a slower rate than the latter. This has 
proven satisfactory. The  stream funct ion,  velocity,  
tempera ture  and vort ici ty fields are noted to be steady 
when  the Nusselt numbe r  is steady. 

Experimental flow visualization technique 
The  apparatus used for the experimental  model  (Fig 
2) was essentially similar to that described by  Lin- 
thorst, Schinkel  and Hoogendoorn  5, except for the 
t rapezoidal  cavity. The  isothermal walls consist of 
brass-plate water jackets that were fed from constant 
tempera ture  baths. The  frame be tween the jackets was 
constructed from perspex with d u m m y  cavities adja- 
cent to the boundaries.  The  device has proved  to be 
successful in ensuring that the parallel boundar ies  are 
adiabatic.  The  other boundar ies  were insulated by  
blocks of polystyrene foam. The  cavity was moun ted  
on a precision dividing head so that the cavity could  
be incl ined at any requi red  angle to wi thin  +0.5 ° . 
The  water  in each jacket was mainta ined at a steady 
tempera ture  to an accuracy of +0.1 °C. The  spatial 
variations of tempera ture  wi thin  the jackets were 
measured by  thermocouples  immersed in the water. 
The  flow rate of the water was adjusted to ensure that 
the variations were wi thin  +0.1 °C. 

The  fluid mot ion was made  visible by introduc-  
ing a small quant i ty  of cigarette smoke through long 
small d iameter  copper  tube  vents in the boundaries.  
The  smoke was i l luminated by  a col l imated beam of 
light to make observations in a part icular  plane of 
interest. 

/ 

Constant 
temperature 
bath (Th) 

Fig 2 Experimental enclosure 

Convection in inclined non-rectangular enclosures 

After al lowing several hours for the apparatus 
to reach thermal  equi l ibr ium,  the smoke was intro- 
duced  and the vents closed. It was found  that the 
injected cigarette smoke circulated in the enclosure 
for about  15 minutes before  it showed any signs of 
settling out on the walls. This confirmed the bel ief  
that cigarette smoke acts as if it were neutral ly buoyant  
in air. Th e  injection temperature  did not necessarily 
match the local temperature  wi thin  the enclosure. 
However ,  by the t ime a photograph was taken, the 
smoke had travelled a round the enclosure a few times 
and should have come to equi l ibr ium with the 
enclosed air. 

Results and discussion 
Th e  discussion here is based on the steady state results 
obta ined from the transient solutions of the governing 
equat ions with initial values of ~O, u, v, 0 and ~ all set 
to zero, except the temperature  at the cold and hot 
walls. Th e  temperature  O is 0.0 at the cold wall and 
1.0 at the hot wall. The  mesh size used for the solutions 
illustrated here is 21 × 61. 

For  a low aspect ratio cavity (A =3.0),  the 
effects of variation of tilt angle on the tempera ture  
and streamline contours for Ra = 103 and 105 are 
shown in Fig 3. A study of the many  corresponding 

b STREAMLINES ISOTHERMS 

Fig 3 Numerical  f low v~vxzlization for  A = 3.0, Pr = 
0.T with (a) Ra= 103, (b) Ra= 105 at #~ = 0  °, 90 °, 180 ° 
and 270 ° 
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runs that were made indicate that for Ra = 102 and 
103 (Fig 3(a)) the conduct ion  regime dominates,  and 
transits at Ra = 104 before developing into strong 
boundary  layer type of flow at Ra = 105 (Fig 3(b)). 
For  the trapezoidal  enclosure in the horizontal  posi- 
tion, Figs 3(a)(i) and (b)(i) show that when  the Ra is 
increased, the temperature  and streamline contours  
become skewed. At R a = 1 0 5 ,  the flow al though 
remaining uni-cellular,  has skewed to the hot side due  
to the stronger convect ive  current  along the hot 
incl ined wall. When the cavity is tilted until  the hot 
wall is direct ly below the cold wall (Figs 3(a)(ii) and 
(b)(ii)), the flow pattern changes to a two-cell  'cat-eye'  
pattern,  with one cell on top of the other. As Ra 
increases to 105, the temperature  contours show a 
marked departure from the conduct ion  pattern of 
Ra = 10 a. With the cavity inverted (Figs 3(a)(iii) and 
(b)(iii)), the flow patterns are similar to those in Figs 
3(a)(i) and (b)(i), except that here the rising fluid along 
the incl ined hot wall has a shorter path to the cold 
wall for the dissipation of heat. This was also indicated 
by the study of the mean Nusselt number ,  N u ,  which 
has a maximum value at this angle of tilt (Fig 6(a)). 
With the heated incl ined wall at the top, the vertical 
temperature  gradient is adverse to the buoyancy-  
induced  flow, the fluid is therefore relatively stagnant 
and the temperature  contours are characteristic of 
conduct ion .  The  situation is, however,  slightly differ- 
ent from the corresponding case for a rectangular  
cavity. The  cavity a l though heated at the top, is able 
to induce  some fluid mot ion because of the incl inat ion 
of the hot wall. F lu id  heated at the bot tom of the hot 
wall rises alongside the hot wall to the top, thus 

creating a weak convect ive  cell near the top. This  has 
also shown up in the mean Nusselt number  study 
which  show a min imum N u  at this angle of tilt (Fig 
6(a)). 

F low visualization experiments were perfor- 
med  to verify the above flow pattern predicted by  the 
finite difference study. Fig 4 shows the corresponding 
cases for Ra .-~ 2.0 x 105. The  computed  streamline is 
encouragingly  similar to the smoke pattern. Fig 4(a) 
shows that at 4~ = 0, the air close to the hot wall is 
heated and rises along the incl ined wall. Cold air from 
the bot tom replaces the rising hot air, thus creating a 
uni-cellular  flow pattern. Similar flow patterns were 
observed for & = 180 ° (Fig 4(e)). The  uni-cellular  
flows in these cases are skewed towards the hot wall. 
For  ~b = 90 ° and ~b = 270 °, Figs 4(b) and (d) show two 
counter-rotat ing ceils, one near the hot wall and one 
near the cold wall. For  4~ = 270 °, however,  the smoke 
does not show the two counter-rotat ing cells well due 
to the very stagnant nature of the flow under  this 
condit ion.  

When the aspect ratio is increased to 6.0, the 
corresponding streamline and temperature  contour  
are shown in Fig. 5. The  general t rend is similar to 
that of Fig 3 except that now the temperature  contours  
are more widely  spaced and hence there is a general 
reduct ion in the mean Nusselt number  for the corres- 
ponding  cases. The  corresponding mean Nusselt num- 
ber versus angle of tilt for A = 3.0 and A = 6.0 is shown 
in Fig 6. The  results indicate a maximum mean 
Nusselt number ,  N u ,  at a round ~b=180 ° and 
min imum N u  at a round ~b = 270 °, irrespective of the 
Rayleigh number,  for A = 3.0 and 6.0. 

Fig  4 E x p e r i m e n t a l  f l ow  v isual i za t ion  f o r  A = 3.0, Pr = O. 7 (air) wi th  Ra ~- 2 x 105 at  4~ = 00, 90 °, 180 ° and  270  ° 
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F i g  5 N u m e r i c a l  f l o w  v i s u a l i z a t i o n  f o r  A = 6.0, Pr = 
0 . 7 w i t h  (a) R a =  10 3, (b) R a =  1 0 5 a t  cP=O °, 90% 180 ° 
and  2 7 0  ° 

Conclusion 
T h e  resul ts  p r e s e n t e d  h e r e  s h o w  tha t  t he  hea t  t ransfer ,  
in a t r a p e z o i d a l  e n c l o s u r e  w i t h  t w o  45 ° i n c l i n e d  s ide  
wal l s  of  m o d e r a t e  aspec t  rat ios,  is a s t rong  f u n c t i o n  
of  t h e  o r i e n t a t i o n  a n g l e  of  t he  cav i ty  for  R a  grea te r  
t h a n  104. A m a x i m u m  N u  occurs  at a r o u n d  ~b = 180 ° 
a n d  m i n i m u m  N u  occurs  at a r o u n d  4) = 270 °, i r respec-  
t ive  of  t he  R a y l e i g h  n u m b e r .  A t r ans i t i on  in t he  m o d e  
of  c i r c u l a t i o n  w i t h i n  t he  e n c l o s u r e  o c c u r r e d  at t he  
a n g l e  c o r r e s p o n d i n g  to t he  m a x i m u m  or m i n i m u m  
N u .  T h e  m o d e  of  al l  f low pa t te rns  was ve r i f i ed  f r o m  
the  f in i te  d i f f e r e n c e  so lu t ions  a n d  the  f low v i sua l i z -  
a t ion  e x p e r i m e n t .  
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1 80K REVIIEW 
Photon Correlation Techniques in Fluid Mechanics 
Ed. E. O. Schu lz -DuBois  

The 34 papers presented at the 5th International Con- 
ference on Photon Correlation Techniques include 
20 which describe aspects of laser velocimetry and a 
further 6 concerned with details of the correlation 
technique. The range of applications is wide and 
includes a two-dimensional wake, ship wakes, a wing, 
mixed convection in a cylinder, internal combustion 
engines, a transonic cascade and turbomachinery. The 
papers are short and tend to be demonstrative rather 
than to provide serious attempts to describe fluid- 
dynamic phenomena. It appears that all papers pre- 
sented at the Conference are reproduced in the 
volume and without editing. 

The volume is likely to be useful to readers of 
Heat and Fluid Flow mainly because it reveals the 

growing range of applications of the photon-correla- 
tion technique for the measurement of velocity. It 
does not provide a balanced view, in that the advan- 
tages of the technique, relative to pressure probes, 
hot-wire, flying hot-wire and pulsed wire anemometry 
and to alternative methods of processing Doppler and 
two-spot signals, are not made clear. This is not the 
fault of the volume but readers should be aware of 
its narrow perspective, and appraise the possibilities 
of alternative and probably simpler techniques. 

d. H. Whitelaw 
Imperial College, London, UK 
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